SOAL NO.3 

 

1. Pendahuluan[Kembali]

Dalam dunia peternakan modern, penggunaan teknologi elektronika semakin berperan penting dalam menunjang produktivitas dan efisiensi, salah satunya melalui sistem kontrol otomatis inkubator ayam. Inkubator berfungsi untuk menciptakan lingkungan buatan yang stabil dan optimal agar telur ayam dapat menetas tanpa indukan. Proses ini sangat bergantung pada kondisi suhu dan kelembaban yang konsisten, sehingga dibutuhkan sistem pengendali otomatis yang presisi. Dengan memanfaatkan berbagai sensor seperti sensor suhu (misalnya LM35 atau DHT11) dan sensor kelembaban, serta perangkat output seperti pemanas, kipas, dan penyemprot air, sistem inkubator dapat dikendalikan secara elektronik. Teknologi ini biasanya melibatkan penggunaan mikrokontroler atau rangkaian berbasis Op-Amp dan transistor yang bertugas membaca data sensor dan mengaktifkan aktuator secara otomatis. Penerapan sistem ini tidak hanya meningkatkan tingkat keberhasilan penetasan, tetapi juga mengurangi ketergantungan pada pengawasan manual.

2. Tujuan[Kembali]

  1. Mengaktifkan aktuator seperti pemanas, kipas, atau penyemprot air berdasarkan data sensor.

  2. Meningkatkan efisiensi dan akurasi dalam proses inkubasi dengan sistem otomatis yang dapat bekerja tanpa pengawasan terus-menerus.

  3. Memberikan pemahaman praktis tentang penerapan sistem kontrol elektronik dalam bidang peternakan.

 


3. Alat dan Bahan[Kembali]

A. Alat

1. Baterai


Baterai (Battery) adalah sebuah alat yang dapat mengubah energi kimia yang disimpannya menjadi energi Listrik yang dapat digunakan oleh suatu perangkat Elektronik. 

Spesifikasi dan Pinout Baterai

Input voltage: ac 100~240v / dc 10~30v
Output voltage: dc 1~35v
Max. Input current: dc 14a
Charging current: 0.1~10a
Discharging current: 0.1~1.0a
Balance current: 1.5a/cell max
Max. Discharging power: 15w
Max. Charging power: ac 100w / dc 250w
Jenis batre yg didukung: life, lilon, lipo 1~6s, lihv 1-6s, pb 1-12s, nimh, cd 1-16s
Ukuran: 126x115x49mm
Berat: 460gr



2. Generator DC



Generator DC merupakan sebuah perangkat mesin listrik dinamis yang mengubah energi mekanis menjadi energi listrik. Generator DC menghasilkan arus DC / arus searah.

Spesifikasi :

Non gearbox
Speed : 2750 rpm
Output : DC 12V
Arus : 35A
Built-in regulator
Dimensi body : panjang 11,5 cm x diameter 9,75 cm
Berat : 2,6 kg
Kondisi : second berkualitas


B. Bahan

1. Resistor


Resistor merupakan salah satu komponen yang digunakan dalam sebuah sirkuit atau rangkaian elektronik. Resistor berfungsi sebagai resistansi/ hambatan yang mampu mengatur atau mengendalikan tegangan dan arus listrik rangkaian.


2. OP AMP


Operational Amplifier atau yang lebih sering disebut op amp merupakan suatu komponen elektronika analog yang berfungsi sebagai penguat atau amplifier multiguna yang diwujudkan dalam sebuah IC op-amp.


3. Dioda 1N4002


Spesifikasi :




4. Ground



Dalam sistem elektronika ground berarti sebuah titik referensi umum atau tegangan potensial sama dengan “tegangan nol”. Ground bersifat relatif, karena dapat memilih titik dimana saja dalam sirkuit untuk dijadikan ground untuk mereferensi semua tegangan dalam rangkaian.


5. Transistor BC547

Spesifikasi :
  • Type - NPN
  • Collector-Emitter Voltage: 35 V
  • Collector-Base Voltage: 35 V
  • Emitter-Base Voltage: 5 V
  • Collector Current: 2.5 A
  • Collector Dissipation - 10 W
  • DC Current Gain (hfe) - 100 to 200
  • Transition Frequency - 160 MHz
  • Operating and Storage Junction Temperature Range -55 to +150 °C
  • Package - TO-126

Konfigurasi transistor :
 Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

    Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

    Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.


6. Relay

    Relay adalah Saklar (Switch) yang dioperasikan secara listrik dan merupakan komponen Electromechanical (Elektromekanikal) yang terdiri dari 2 bagian utama yakni Elektromagnet (Coil) dan Mekanikal (seperangkat Kontak Saklar/Switch). Relay menggunakan Prinsip Elektromagnetik untuk menggerakkan Kontak Saklar sehingga dengan arus listrik yang kecil (low power) dapat menghantarkan listrik yang bertegangan lebih tinggi. Sebagai contoh,  Relay yang menggunakan Elektromagnet 5V dan 50 mA mampu menggerakan Armature Relay (yang berfungsi sebagai saklarnya) untuk menghantarkan listrik 220V 2A.

7. Sensor suhu


    Sensor LM35 bekerja dengan mengubah besaran suhu menjadi besaran tegangan. Tegangan ideal yang keluar dari LM35 mempunyai perbandingan 100°C setara dengan 1 volt. Sensor ini mempunyai pemanasan diri (self heating) kurang dari 0,1°C, dan dapat dioperasikan dengan menggunakan power supply tunggal dan dapat dihubungkan antar muka (interface) rangkaian kontrol yang sangat mudah

8, Motor

    Merupakan piranti elektronika yang mengubah energi listrik menjadi energi mekanik. pada motor DC terdapat 2 Input yang jika diberikan input yang berbeda maka motor akan berputar CCW atau CW tergantung pada inputan yang dimasukan dan jika diberikan dua input dengan nilai sama maka motor dc akan berhenti. maksud nilai disini adalah HIGH atau LOW, jadi :

HIGH HIGH = motor tidak berputar
HIGH LOW = motor berputar
LOW LOW = motor tidak berputar
LOW HIGH = motor berputar


9. Logicstate

    Gerbang logika atau logic gate adalah suatu entitas dalam elektronika dan matematika Boolean yang mengubah satu atau beberapa masukan logik menjadi sebuah sinyal keluaran logika


10. Infrared sensor

11. LoadCell
12. sound sensor

 


4. Dasar Teori[Kembali]

A. Resistor

Resistor adalah komponen Elektronika Pasif yang memiliki nilai resistansi atau hambatan tertentu yang berfungsi untuk membatasi dan mengatur arus listrik dalam suatu rangkaian Elektronika (V=I R).

Jenis Resistor yang digunakan disini adalah Fixed Resistor, dimana merupakan resistor dengan nilai tetap terdiri dari film tipis karbon yang diendapkan subtrat isolator kemudian dipotong berbentuk spiral. Keuntungan jenis fixed resistor ini dapat menghasilkan resistor dengan toleransi yang lebih rendah.

Cara menghitung nilai resistor:


Contoh :
Gelang ke 1 : Coklat = 1
Gelang ke 2 : Hitam = 0
Gelang ke 3 : Hijau   = 5 nol dibelakang angka gelang ke-2; atau kalikan 105
Gelang ke 4 : Perak  = Toleransi 10%
Maka nilai resistor tersebut adalah 10 * 105 = 1.000.000 Ohm atau 1 MOhm dengan toleransi 10%.





B. Transistor NPN


Transistor adalah sebuah komponen di dalam elektronika yang diciptakan dari bahan-bahan semikonduktor dan memiliki tiga buah kaki. Masing-masing kaki disebut sebagai basis, kolektor, dan emitor.

1. Emitor (E) memiliki fungsi untuk menghasilkan elektron atau muatan negatif.

2. Kolektor (C) berperan sebagai saluran bagi muatan negatif untuk keluar dari dalam transistor.

3. Basis (B) berguna untuk mengatur arah gerak muatan negatif yang keluar dari transistor melalui kolektor.

    Berfungsi sebagai penguat, sebagai sirkuit pemutus dan penyambung arus (switching), stabilisasi tegangan, dan modulasi sinyal. Selain itu, transistor biasanya juga dapat digunakan sebagai saklar dalam rangkaian elektronika. Jika ada arus yang cukup besar di kaki basis, transistor akan mencapai titik jenuh. Pada titik jenuh ini transistor mengalirkan arus secara maksimum dari kolektor ke emitor sehingga transistor seolah-olah short pada hubungan kolektor-emitor. Jika arus base sangat kecil maka kolektor dan emitor bagaikan saklar yang terbuka. Pada kondisi ini transistor dalam keadaan cut off sehingga tidak ada arus dari kolektor ke emitor. 


Rumus rumus transistor :


Spesifikasi :
  • Bi-Polar Transistor
  • DC Current Gain (hFE) is 800 maximum
  • Continuous Collector current (IC) is 100mA
  • Emitter Base Voltage (VBE) is > 0.6V
  • Base Current(IB) is 5mA maximum

Konfigurasi Transistor


    Konfigurasi Common Base adalah konfigurasi yang kaki Basis-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT.  Pada Konfigurasi Common Base, sinyal INPUT dimasukan ke Emitor  dan sinyal OUTPUT-nya diambil dari Kolektor, sedangkan kaki Basis-nya di-ground-kan. Oleh karena itu, Common Base juga sering disebut dengan istilah “Grounded Base”. Konfigurasi Common Base ini menghasilkan Penguatan Tegangan antara sinyal INPUT dan sinyal OUTPUT namun tidak menghasilkan penguatan pada arus.

    Konfigurasi Common Collector (CC) atau Kolektor Bersama memiliki sifat dan fungsi yang berlawan dengan Common Base (Basis Bersama). Kalau pada Common Base menghasilkan penguatan Tegangan tanpa memperkuat Arus, maka Common Collector ini memiliki fungsi yang dapat menghasilkan Penguatan  Arus namun tidak menghasilkan penguatan Tegangan. Pada Konfigurasi Common Collector, Input diumpankan ke Basis Transistor sedangkan Outputnya diperoleh dari Emitor Transistor sedangkan Kolektor-nya di-ground-kan dan digunakan bersama untuk INPUT maupun OUTPUT. Konfigurasi Kolektor bersama (Common Collector) ini sering disebut juga dengan Pengikut Emitor (Emitter Follower) karena tegangan sinyal Output pada Emitor hampir sama dengan tegangan Input Basis.

    Konfigurasi Common Emitter (CE) atau Emitor Bersama merupakan Konfigurasi Transistor yang paling sering digunakan, terutama pada penguat yang membutuhkan penguatan Tegangan dan Arus secara bersamaan. Hal ini dikarenakan Konfigurasi Transistor dengan Common Emitter ini menghasilkan penguatan Tegangan dan Arus antara sinyal Input dan sinyal Output. Common Emitter adalah konfigurasi Transistor dimana kaki Emitor Transistor di-ground-kan dan dipergunakan bersama untuk INPUT dan OUTPUT. Pada Konfigurasi Common Emitter ini, sinyal INPUT dimasukan ke Basis dan sinyal OUTPUT-nya diperoleh dari kaki Kolektor.


 FIXED BIAS 

        Rangkaian transistor NPN dengan fixed bias bekerja dengan mengatur arus dan tegangan melalui komponen-komponen seperti transistor NPN, resistor basis (RB), dan resistor kolektor (RC) yang terhubung ke sumber tegangan DC (VCC). Dalam rangkaian ini, basis transistor diberi tegangan melalui RB, menciptakan tegangan basis-emitor (VBE) sekitar 0.7V, sehingga transistor berada dalam kondisi aktif. Arus basis (IB) yang mengalir ditentukan oleh VCC dan RB. Arus kolektor (IC) diperbesar oleh faktor penguatan arus transistor (β), sehingga IC = β * IB. Tegangan kolektor-emitor (VCE) dihitung dengan mengurangkan tegangan jatuh pada RC dari VCC, yaitu VCE = VCC - IC * RC. Transistor dapat beroperasi dalam kondisi aktif (menguatkan sinyal), saturasi (sakelar tertutup), atau cut-off (sakelar terbuka), tergantung pada arus basisnya. Rangkaian ini sederhana namun memiliki stabilitas termal yang buruk dan kurang cocok untuk aplikasi yang memerlukan penguatan tinggi dan stabilitas baik.

C. Infrared Sensor

Infra red (IR) detektor atau sensor infra merah adalah komponen elektronika yang dapat mengidentifikasi cahaya infra merah (infra red, IR). Sensor infra merah atau detektor infra merah saat ini ada yang dibuat khusus dalam satu modul dan dinamakan sebagai IR Detector Photomodules. IR Detector Photomodules merupakan sebuah chip detektor inframerah digital yang di dalamnya terdapat fotodiode dan penguat (amplifier). Bentuk dan Konfigurasi Pin IR Detector Photomodules TSOP.

Prinsip Kerja Sensor Infrared


Ketika pemancar IR memancarkan radiasi, ia mencapai objek dan beberapa radiasi memantulkan kembali ke penerima IR. Berdasarkan intensitas penerimaan oleh penerima IR, output dari sensor ditentukan.



    Prinsip kerja rangkaian sensor infrared berdasarkan pada gambar 2. Adalah ketika cahaya infra merah diterima oleh fototransistor maka basis fototransistor akan mengubah energi cahaya infra merah menjadi arus listrik sehingga basis akan berubah seperti saklar (swith closed) atau fototransistor akan aktif (low) secara sesaat seperti gambar 3:

Grafik respon sensor infrared :


    Grafik menunjukkan hubungan antara resistansi dan jarak potensial untuk sensitivitas rentang antara pemancar dan penerima inframerah. Resistor yang digunakan pada sensor mempengaruhi intensitas cahaya inframerah keluar dari pemancar. Semakin tinggi resistansi yang digunakan, semakin pendek jarak IR Receiver yang mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih rendah dari IR Transmitter. Sementara semakin rendah resistansi yang digunakan, semakin jauh jarak IR Receiver mampu mendeteksi sinar IR yang dipancarkan dari IR Transmitter karena intensitas cahaya yang lebih tinggi dari IR Transmitter.



D. Sensor Suhu LM35

    Sensor suhu LM35 adalah komponen elektronika yang memiliki fungsi untuk mengubah besaran suhu menjadi besaran listrik dalam bentuk tegangan. LM35 memiliki keakuratan tinggi dan kemudahan perancangan jika dibandingkan dengan sensor suhu yang lain, LM35 juga mempunyai keluaran impedansi yang rendah dan linieritas yang tinggi sehingga dapat dengan mudah dihubungkan dengan rangkaian kendali khusus serta tidak memerlukan penyetelan lanjutan.


    Meskipun tegangan sensor ini dapat mencapai 30 volt akan tetapi yang diberikan ke sensor adalah sebesar 5 volt, sehingga dapat digunakan dengan catu daya tunggal dengan ketentuan bahwa LM35 hanya membutuhkan arus sebesar 60 µA hal ini berarti LM35 mempunyai kemampuan menghasilkan panas (self-heating) dari sensor yang dapat menyebabkan kesalahan pembacaan yang rendah yaitu kurang dari 0,5 ºC pada suhu 25 ºC.

Karakteristik Sensor LM35 :
  • Memiliki sensitivitas suhu, dengan faktor skala linier antara tegangan dan suhu 10 mVolt/ºC, sehingga dapat dikalibrasi langsung dalam celcius.
  • Memiliki ketepatan atau akurasi kalibrasi yaitu 0,5ºC pada suhu 25 º.
  • Memiliki jangkauan maksimal operasi suhu antara -55 ºC sampai +150 ºC.
  • Bekerja pada tegangan 4 sampai 30 volt.
  • Memiliki arus rendah yaitu kurang dari 60 µA.
  • Memiliki pemanasan sendiri yang rendah (low-heating) yaitu kurang dari 0,1 ºC pada udara diam.
  • Memiliki impedansi keluaran yang rendah yaitu 0,1 W untuk beban 1 mA.
  • Memiliki ketidaklinieran hanya sekitar ± ¼ ºC.

Keistimewaan dari IC LM 35 :
  • Kalibrasi dalam satuan derajat celcius.
  • Lineritas +10 mV/ º C.
  • Arus yang mengalir kurang dari 60 μA
  • Dioperasikan pada catu daya 4 V – 30 V.
  • Range +2 º C – 150 º C.
  • Akurasi 0,5 º C pada suhu ruang.
  • Suhu lingkungan di deteksi menggunakan bagian IC yang peka terhadap suhu


Jika dilihat pada grafik, ketika suhu semakin meningkat maka tegangan yang dihasilkan pun semakin besar, dimana setiap perubahan 1º C akan menghasilkan perubahan tegangan output sebesar 10mV


E. Load cell

Load cell adalah sensor atau transduser yang digunakan untuk mengukur gaya atau berat dengan mengubah tekanan mekanik menjadi sinyal listrik. Load cell bekerja berdasarkan prinsip regangan (strain gauge), di mana saat beban diberikan, elemen di dalam sensor mengalami deformasi yang sangat kecil, lalu menghasilkan perubahan resistansi. Perubahan resistansi ini kemudian dikonversi menjadi sinyal tegangan listrik yang sangat kecil, biasanya dalam bentuk output analog miliVolt (mV), dan perlu diperkuat menggunakan penguat (amplifier) seperti HX711 untuk dibaca oleh mikrokontroler.

Load cell memiliki respons linier terhadap beban, artinya semakin besar beban yang diberikan, semakin besar pula output tegangan yang dihasilkan. Sensor ini sangat sensitif dan akurat, dengan kemampuan merespon perubahan beban dalam waktu nyata (real-time), sehingga cocok digunakan dalam sistem penimbangan otomatis, alat ukur massa, atau pengontrol inkubator ayam untuk mendeteksi keberadaan atau berat telur.

Grafik respon:




G. OP-AMP LM741


    Op-Amp adalah salah satu dari bentuk IC Linear yang berfungsi sebagai Penguat Sinyal listrik. Sebuah Op-Amp terdiri dari beberapa Transistor, Dioda, Resistor dan Kapasitor yang terinterkoneksi dan terintegrasi sehingga memungkinkannya untuk menghasilkan Gain (penguatan) yang tinggi pada rentang frekuensi yang luas. Dalam bahasa Indonesia, Op-Amp atau Operational Amplifier sering disebut juga dengan Penguat Operasional.

Karaketeristik penguat ideal :
  • Gain sangat besar (AOL >>). Penguatan open loop adalah sangat besar karena feedback-nya tidak ada atau RF = tak terhingga, serta pada rentang frekuensi yang luas.
  • Impedansi input sangat besar (Zi >>). Impedansi input adalah sangat besar sehingga arus input ke rangkaian dalam op-amp sangat kecil sehingga tegangan input sepenuhnya dapat dikuatkan.
  • Impedansi output sangat kecil (Zo <<).
Konfigurasi pin LM741 :
Spesifikasi :

Respon karakteristik kurva I-O :


Detektor Inverting

Detektor inverting menggunakan konfigurasi inverting amplifier pada rangkaian Op-Amp, di mana sinyal dari sensor atau input diberikan ke kaki inverting (−) Op-Amp melalui resistor. Kaki non-inverting (+) dihubungkan ke ground atau referensi tegangan tetap. Rangkaian ini menghasilkan output yang berlawanan fasa dengan input, artinya jika sinyal input naik, maka output akan turun, dan sebaliknya. Penguatan dari rangkaian ditentukan oleh perbandingan antara resistor umpan balik (Rf) dan resistor input (Rin) dengan rumus Av=RfRin. Konfigurasi inverting sering digunakan untuk deteksi sinyal negatif atau untuk membalik sinyal sensor sebelum dikendalikan lebih lanjut oleh sistem.

Detektor Non-Inverting

Detektor non-inverting menggunakan konfigurasi non-inverting amplifier, di mana sinyal dari sensor langsung masuk ke kaki non-inverting (+) Op-Amp. Kaki inverting (−) dihubungkan ke ground melalui pembagi tegangan dari dua resistor. Rangkaian ini menghasilkan output yang sefasa dengan input, artinya arah perubahan tegangan input akan searah dengan output. Penguatan ditentukan oleh rumus Av=1+RfR1. Detektor non-inverting cocok digunakan saat sinyal dari sensor ingin diperkuat tanpa dibalik fasanya, misalnya untuk mendeteksi suhu, cahaya, atau kelembaban yang semakin tinggi dan langsung mengaktifkan aktuator seperti kipas atau pompa air.


5. Percobaan[Kembali]

 

6. Video Percobaan[Kembali]


 


7. Download File[Kembali]

download file rangkaian [disini] 

download file infraed sensor library [disini] 

Komentar

Postingan populer dari blog ini

Tugas Pendahuluan